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In application areas such as Industrial IoT and automotive, there is a strong need to combine more 
software-based functions in fewer hardware components. This is achieved through aggregation, 
putting all functions into the same device.

Here, virtualization is used for this software aggregation. For cloud server applications, containers 
are currently known as a relatively lightweight solution. However, when embedded systems have a 
safety and security aspect, one has to resort to other solutions.

Hypervisors, which have been used in the embedded area for years, offer a very safe and secure 
solution. In this white paper we discuss containers and the four different hypervisor types. 
Furthermore, we will present a new real-time hypervisor based on an innovative multikernel 
technology RTOS with POSIX interface and explain how to achieve better performance and 
freedom from interference (FFI) on multi/manycore hardware.
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Stability and robustness are almost always key requirements of embedded systems. However, as 
a design evolves, extra functionality is often added in a modular approach producing excessively 
distributed systems that impose increased cost and complexity.

Figure 1. Evolution of complex embedded system architecture

Complex system development and testing

Function aggregation and added connectivity

Introduction

The automotive industry provides a prime 
example of this tendency. As demands have 
grown for more and more user features and 
extra mandatory safety systems, the number 
of electronic control units (ECUs) distributed 
throughout the vehicle has grown enormously 
with over 100 ECUs present in some high-end 
models.

In this space and others, such as edge 
computing applications and general industrial 
electronics, there is a strong need to merge 
more functions into less hardware. This can 
be achieved through aggregation, by simply 
bringing the functions with minimal changes 
into the same box. The trend towards domain 
and, more recently, zonal architectures in 
automotive is an example of this approach. 

After aggregation, consolidation describes 
introducing adaptations at the software level 
to combine functions on common hardware. 
This offers the opportunity to save the physical 
bill of materials (BOM) by reducing not only 
the number of processors but also passive 
components, connectors, wiring, PCBs and 
enclosures.

Virtualization is a powerful technique that can 
be used to consolidate functions on a single 
hardware platform. Recently, containers have 
also emerged in embedded systems as a popular 
and effective way to achieve consolidation. 
Another approach is to use a hypervisor. Each 
approach has its own strengths as well as some 
issues that must be considered.
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Virtualization Techniques
Implementing virtualization can be complex, 
involving extensive development time, costs, 
and risk. As stated, robustness and stability are 
extremely important. If there is a safety aspect 
to the system’s functionality, this can be difficult 
to manage in an embedded system. While it 
may be acceptable for the user interface, for 

example, to fail, it is critical that safety-related 
systems should offer continuous availability. 
However, when there are multiple safety-critical 
functions it is also important – and challenging 
– to assign a different and appropriate priority 
to each. Similarly, care must be taken to ensure 
adequate system security.

Category Hypervisor Containers

General
Hypervisor is a strong technique 
for virtualization: each environment 
runs in a full virtual machine (VM)

Container is a weaker virtualization 
technique: groups of applications 
share the same operating system 
services

Granularity Groups of apps + guest-OS One OS with groups of apps

MMU usage Level 2 hypervisor, Level 1 guest OS Level 1 host-OS

Performance More expensive context switches Just host-OS

Integration process Incremental integration All applications must be verified 
together

Software update Affects one guest-OS Affects the entire platform

Security breach Affects one guest-OS Affects the entire platform

Safety concern Can decompose into subsystems Must consider all applications
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Among the techniques available to achieve 
virtualization, containers can offer a relatively 
lightweight solution in terms of software 
overhead, helping to keep performance. On 
the other hand, the platform can be vulnerable 
to failure if one of the hosted applications 
causes a malfunction in the kernel, since the 
very principle of containers is to have a single 
kernel host multiple containers. Also, security 
vulnerabilities are applicable to the entire 
platform.

In contrast, a hypervisor can offer a solution 
to avoid some of these potential hazards. 
One strong advantage is that the hypervisor 
relieves interdependencies between the various 
applications and guest OSes hosted on the 
platform. This can simplify the development 
of each guest system drastically. Then, 
various approaches are available and careful 
consideration of each is necessary to ensure 
an appropriate blend of performance, system 
robustness, and security.

In general, a hypervisor is a stronger isolation 
technique. Each guest OS, including its kernel, 
runs in a full virtual machine, and each guest 
kernel is responsible for coordinating its own 
applications inside its local world. This requires 
heavier context switches when two applications 
in two different guests communicate but 
provides a verifiably stronger protection. In 
contrast, a container runs multiple OSes over a 
single kernel. This means that switches between 
applications are much faster, but a failure in the 
kernel causes a full system malfunction.

Another aspect is the possible gradual 
integration and upgrade path that the hypervisor 
proposes: because it allows running multiple 
full execution environments, upgrading a guest 
kernel will only impact that environment without 
modifying whatsoever the other OSes. On a 
container, upgrading a container requires the 
review of all the containers to ensure that the 
kernel behavior is unchanged.

Handling of security and safety is also potentially 
more robust in the hypervisor context. With the 
hypervisor an application may be able to corrupt 
its guest OS. However, the fact that each guest 
is isolated helps limit the impact on security and 
safety, because it is also isolated from other 
guests.  Another application running in another 
guest can continue to run unaffected on the 
same platform. A security breach in the guest 
kernel, for example, affects one guest OS running 
on the hypervisor, whereas the containerized 
approach leaves all users affected because 
of the single kernel design. As far as safety is 
concerned, the hypervisor can be decomposed 
into multiple subsystems whereas the safety 
implications of one container failure must be 
considered for all applications.

Finally, a hypervisor-based system is potentially 
easier to analyze because – unlike the 
containerized approach - it is not necessary 
to assess the impact of any error on all other 
aspects of the system. The “divide-and-
conquer” approach makes the isolation of 
concerns more clear, at least from a CPU 
application scope perspective.
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Type 0 hypervisor is relatively lightweight, similar 
to a bootloader with additional monitoring 
capability. Indeed, it contains a minimalistic 
bootloader that loads guests on different CPU 
cores. In addition, there is only a small monitor 
to detect any issues like incorrect accesses by 
guests. When the platform is running smoothly, 
the monitor does nothing. Hence the main 
role of a type 0 hypervisor is to start different 
operating systems with some level of isolation 
on different cores. This can be suitable when 
the system is relatively simple, there are enough 
cores to dedicate one or more to each function, 
and there is no device sharing to manage. 
Different guests are simply assigned to different 
cores in a static way.

A type 1 hypervisor is more sophisticated 
and performs the role of a real scheduler and 
protection environment. It can work with 
dynamic workloads but typically a fixed number 
of guests. At bootup, the hypervisor starts the 
first guest as the master guest. The master 
then starts the other guests. The hypervisor 
coordinates the execution of these environments 
and ensures they run correctly and in a real-
time, deterministic manner, switching between 
processes according to a time-based trigger 
or depending on the relative priorities of the 
different guest operating systems. The type 1 
hypervisor simplifies retaining real-time and 

deterministic properties. One drawback is that 
the master OS – being responsible for loading 
the guest OSes – is also often responsible for 
device sharing. Thus, a safe OS running as a 
guest on the platform is effectively dependent 
on a non-safe operating system. This may 
not ensure sufficient robustness, placing 
the entre platform at risk. If the master guest 
malfunctions, the entire hypervisor platform 
may malfunction.

The type 2 hypervisor is significantly different 
in operation. After starting the general-purpose 
operating system, POSIX applications start 
normally. If and when required, virtual machine 
applications can be started as an environment 
to run a guest OS. This ensures full flexibility 
to start one or many guests and run each 
independently through a virtual machine 
manager (VMM). Another advantage is that the 
VMM also manages some level of security from 
the host OS application context, which is less 
privileged than in a Type 1 environment. On the 
other hand, the definition of a Type 2 hypervisor 
defines that a general purpose is used as the 
host OS, like Linux or Windows, but not a real-
time OS and thus it is not able to maintain 
real-time behavior or organize and schedule 
different processes in a fully deterministic 
way. This means that the general consolidated 
system remains unpredictable as a whole.

Hypervisor Choices
Conventionally, there are three categories of hypervisor. They are termed type 0, type 1, and type 2. 
All have their own strengths and drawbacks.

Academic types Other types in practice

• Type 1 hypervisor
• Bare metal hypervisor
• Doesn’t need and doesn’t provide 

any OS functionality
• Type 2 hypervisor

• Hosted hypervisor
• Needs a rich OS that hosts it

• Type 0 hypervisor
• Bootloader combined with a 

software monitor
• Software monitor on higher CPU 

access level
• Type 1.5 hypervisor

• Real-time hypervisor on top of an 
RTOS

• Hypervisor extension on top of a 
real-time, safe & secure RTOS
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Type 1.5: eMCOS Hypervisor®

In contrast with each of these approaches, 
eMCOS Hypervisor combines a privileged 
RTOS and minimal hypervisor code. Based 
on eMCOS® POSIX, which is a multi-process 
RTOS, it is capable of starting multiple POSIX 
applications then running multiple guest OSes 
while maintaining the real-time properties of 
both the VMMs and POSIX applications as 
guests. In this respect, this approach is similar 
to that of a type 2 hypervisor. However, since 

POSIX applications run directly on the POSIX OS, 
there is less overhead than when running inside 
a guest, and the real-time scheduling keeps a 
proper deterministic execution environment. 
Consequently, eMCOS Hypervisor can be seen 
as a type 1.5: a real-time platform capable of 
running direct real-time applications, while at the 
same time giving the possibility to run additional 
OSes and their applications as guests.

It is possible to develop various different 
applications, including POSIX and open-source 
applications, to run on the eMCOS POSIX RTOS 
(figure 2). This can include safety applications 
and security applications, which may have real-
time aspects. VMMs are responsible for running 
the guests and handling any faults. At the 
same time, virtual device drivers with access 
to physical hardware can run as processes, 

allowing guest OSes to share access through 
a suitable bridge application handling each a 
single device, for example for networking or 
console sharing. There is a direct API for native 
applications and standard hypervisor APIs for 
communications: guest OSes communicate 
through virtio interfaces. This enhances the 
flexibility of the platform, because Virtio is 
widely recognized throughout the industry.

Figure 2. The eMCOS Hypervisor permits running multiple guest OSes on common hardware
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Multikernel Architecture
An aspect that is particularly important is that every attempt has been made to minimize the code 
running in the hypervisor domain and in the kernel domain to ensure that most of the code is running 
with the minimum amount of privilege in the platform. 

However, to take consolidation and aggregation properly into account it is also necessary to consider 
multicore behavior.

In a type 1.5 (or type 2) hypervisor, a virtual CPU 
(vCPU) is managed by a thread of the host OS. 
The host OS schedules all the threads in the 
platform with their own priority, time quota, 
and memory allowance, regardless of whether 
said threads are managing a POSIX application 
running directly, or a guest vCPU. This can 
be done using a microkernel, which behaves 
in a way to keep the kernel side as simple 
as possible. Microkernels typically employ 
symmetrical multiprocessing (SMP) that uses 
a global locking system for managing access 
to threads (figure 3). This global locking allows 
only one set of interactions between cores to 
take place at a time, which effectively prevents 
real CPU parallelism. eMCOS hypervisor is 
based on the eMCOS POSIX RTOS that uses 
an innovative microkernel AND multikernel 
design, in which each core runs a scheduler 

that is largely autonomous and allows all cores 
to communicate together using asynchronous 
messages. This allows cores to schedule local 
threads freely using only minimum local locking 
thereby enabling multiple application and guest 
execution to proceed simultaneously and truly 
in parallel. This also enhances freedom from 
interference (FFI) in multicore systems, as 
cores will never depend on each other at the 
microkernel level for rescheduling.

In other words, the use of a multikernel as an 
operating system scheduler allows general 
better system parallelism than a SMP scheduler. 
As an extension, a multikernel-based hypervisor 
also does not introduce a global lock in the 
system and keeps the full parallelism of guest 
OSes.

Figure 3. Multikernel versus SMP locking
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Figure 4. Device management techniques supported in eMCOS Hypervisor

Hypervisor Device Management
Embedded applications are critically dependent 
on correct device management to ensure 
proper use of the common hardware resources. 
Since sharing requires a bridge to coordinate 
accesses, with the related additional latency 
and occasional copies, it is useful to limit the 
amount of shared devices. There is also an 
impact on both safety and security when 

considering failures cases in devices, as a 
device on a shared physical bus may affect 
other device given to other guests.

From the beginning of the project, it is therefore 
important to consider how the various guests 
will use the hardware, including the on-chip and 
off-chip peripherals. 

A number of approaches are effective, as illustrated in figure 4:

Passthrough
direct access from guest,

no sharing,
risk with DMA

Guest

VMM

Kernel

HW

Passthrough with IOMMU
direct access from guest,

no sharing,
HW-restricted DMA

Trap-and-emulate
Guest believes it has full

access, but VMM can
filter access

Paravirtualized
Guest requires specific driver,

best for sharing
e.g., virtio:

standardized virtual devices,
no specific driver development

Bridge

eMCOS Hypervisor device management

Virtio

Passthrough

In this case, the guest OS has direct access 
to the hardware and both the VMM and kernel 
agree that the guest can access the hardware. 
This is suitable when there is no need for device 
sharing. However, when hardware is capable of 
direct memory transfers e.g., a DMA HW, there 
is a risk that the hardware can corrupt the guest, 
but also the VMM or even the host OS.

Passthrough with IOMMU

When direct memory transfers are required e.g., 
by a DMA HW, passthrough with IOMMU (input-
output memory-management unit) allows 
direct access to resources. The IOMMU can 
be configured to ensure only access to guest 
memory is allowed. The device can then only 
corrupt the guest at worse.
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General Advantages of eMCOS Hypervisor
In summary, eMCOS Hypervisor offers several 
advantages to embedded systems developers 
seeking a robust and flexible platform for 
virtualization. These include faster development, 
without requiring any modification, because 
Linux drivers can be reused for sharing physical 
or virtual resources due to eMCOS’ POSIX API.

Further advantages include the opportunity 
to ensure a faster boot sequence by taking 
advantage of the opportunity to completely 

control the startup and execution sequence. 
This gives developers the freedom to choose 
sequential and parallel multicore startup, 
including parallel loading of Linux and Android 
guests and real-time applications. 

Also, true parallelism is possible, building on 
eMCOS POSIX’s real-time multikernel design. 
Truly parallel guest scheduling limits cross-
core interference.

Trap and Emulate

In this approach, the guest behaves in the same 
way as with direct access but in practice the 
VMM traps the request to access the resource 
and decides whether it can be permitted. This 
brings the benefit of increased security, because 
the VMM can filter hardware accesses. For 
stateless devices like clock controllers or GPIO 
(general purpose input/output), this can allow 
basic sharing. 

Paravirtualized

The categories described previously do not 
allow sharing. Paravirtualization is suitable 

for sharing and uses a bridge to manage 
hardware directly. The guest OS no longer has 
direct access to the hardware and typically 
communicates with the hypervisor using a 
standardized interface; the guest is aware that it 
runs on a hypervisor. In eMCOS Hypervisor, this 
is usually a virtio interface. The virtual device 
will talk to the bridge to get access to the real 
world. 

Developers of embedded systems need the 
flexibility to use any and all of these techniques 
together as appropriate to ensure the optimal 
performance. All are supported by eMCOS 
Hypervisor.
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eMCOS Hypervisor in Action
As a practical example, it is possible to show how eMCOS Hypervisor supports virtualization in 
a real-time control system, such as an industrial robot or automated teller machine (ATM). Both 
use cases involve mixed-criticality applications including the user interface as well as robot safety 
controls and ATM security features that require deterministic real-time response.

In the example shown (figure 5), eMCOS Hypervisor runs real-time applications on the native 
eMCOS POSIX RTOS, alongside user-interface and connectivity applications on a Linux guest OS. 
eMCOS also provides valuable extra help to enhance data security and thwart known cyberattacks, 
including safeguards to handle authentication and ensure applications start and run correctly.

Figure 5. eMCOS Hypervisor managing applications running on native RTOS and Linux guest OS
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Conclusion
The relentless demand for more sophisticated 
functionality in embedded systems in turn 
calls for greater system performance and 
features. At the embedded edge, systems are 
aggregated into reduced hardware to save the 
bill of materials. The next step is to consolidate 
the systems through software evolution. 
Consolidating applications with mixed criticality 
that require high standards of security and 

functional safety is best handled using a 
hypervisor that combines the best aspects 
of type 1 and type 2 platforms. The eMCOS 
Hypervisor, which is built on a native POSIX 
RTOS, brings these advantages forward, has 
along with its unique multikernel architecture 
to combine high computing performance with a 
keep safe and secure architecture.
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