
When and How to Use Virtualization
in Embedded Systems Design
(and How a Hypervisor Helps)

Whitepaper

2022-12

In application areas such as Industrial IoT and automotive, there is a strong need to combine more
software-based functions in fewer hardware components. This is achieved through aggregation,
putting all functions into the same device.

Here, virtualization is used for this software aggregation. For cloud server applications, containers
are currently known as a relatively lightweight solution. However, when embedded systems have a
safety and security aspect, one has to resort to other solutions.

Hypervisors, which have been used in the embedded area for years, offer a very safe and secure
solution. In this white paper we discuss containers and the four different hypervisor types.
Furthermore, we will present a new real-time hypervisor based on an innovative multikernel
technology RTOS with POSIX interface and explain how to achieve better performance and
freedom from interference (FFI) on multi/manycore hardware.

2

Introduction 3

Virtualization Techniques 4

Hypervisor Choices 6

Type 1.5: eMCOS Hypervisor 7

Multikernel Architecture 8

Hypervisor Device Management 9

General advantages of eMCOS Hypervisor 10

eMCOS Hypervisor in Action 11

Conclusion 11

3

Stability and robustness are almost always key requirements of embedded systems. However, as
a design evolves, extra functionality is often added in a modular approach producing excessively
distributed systems that impose increased cost and complexity.

Figure 1. Evolution of complex embedded system architecture

Complex system development and testing

Function aggregation and added connectivity

Introduction

The automotive industry provides a prime
example of this tendency. As demands have
grown for more and more user features and
extra mandatory safety systems, the number
of electronic control units (ECUs) distributed
throughout the vehicle has grown enormously
with over 100 ECUs present in some high-end
models.

In this space and others, such as edge
computing applications and general industrial
electronics, there is a strong need to merge
more functions into less hardware. This can
be achieved through aggregation, by simply
bringing the functions with minimal changes
into the same box. The trend towards domain
and, more recently, zonal architectures in
automotive is an example of this approach.

After aggregation, consolidation describes
introducing adaptations at the software level
to combine functions on common hardware.
This offers the opportunity to save the physical
bill of materials (BOM) by reducing not only
the number of processors but also passive
components, connectors, wiring, PCBs and
enclosures.

Virtualization is a powerful technique that can
be used to consolidate functions on a single
hardware platform. Recently, containers have
also emerged in embedded systems as a popular
and effective way to achieve consolidation.
Another approach is to use a hypervisor. Each
approach has its own strengths as well as some
issues that must be considered.

4

Virtualization Techniques
Implementing virtualization can be complex,
involving extensive development time, costs,
and risk. As stated, robustness and stability are
extremely important. If there is a safety aspect
to the system’s functionality, this can be difficult
to manage in an embedded system. While it
may be acceptable for the user interface, for

example, to fail, it is critical that safety-related
systems should offer continuous availability.
However, when there are multiple safety-critical
functions it is also important – and challenging
– to assign a different and appropriate priority
to each. Similarly, care must be taken to ensure
adequate system security.

Category Hypervisor Containers

General
Hypervisor is a strong technique
for virtualization: each environment
runs in a full virtual machine (VM)

Container is a weaker virtualization
technique: groups of applications
share the same operating system
services

Granularity Groups of apps + guest-OS One OS with groups of apps

MMU usage Level 2 hypervisor, Level 1 guest OS Level 1 host-OS

Performance More expensive context switches Just host-OS

Integration process Incremental integration All applications must be verified
together

Software update Affects one guest-OS Affects the entire platform

Security breach Affects one guest-OS Affects the entire platform

Safety concern Can decompose into subsystems Must consider all applications

5

Among the techniques available to achieve
virtualization, containers can offer a relatively
lightweight solution in terms of software
overhead, helping to keep performance. On
the other hand, the platform can be vulnerable
to failure if one of the hosted applications
causes a malfunction in the kernel, since the
very principle of containers is to have a single
kernel host multiple containers. Also, security
vulnerabilities are applicable to the entire
platform.

In contrast, a hypervisor can offer a solution
to avoid some of these potential hazards.
One strong advantage is that the hypervisor
relieves interdependencies between the various
applications and guest OSes hosted on the
platform. This can simplify the development
of each guest system drastically. Then,
various approaches are available and careful
consideration of each is necessary to ensure
an appropriate blend of performance, system
robustness, and security.

In general, a hypervisor is a stronger isolation
technique. Each guest OS, including its kernel,
runs in a full virtual machine, and each guest
kernel is responsible for coordinating its own
applications inside its local world. This requires
heavier context switches when two applications
in two different guests communicate but
provides a verifiably stronger protection. In
contrast, a container runs multiple OSes over a
single kernel. This means that switches between
applications are much faster, but a failure in the
kernel causes a full system malfunction.

Another aspect is the possible gradual
integration and upgrade path that the hypervisor
proposes: because it allows running multiple
full execution environments, upgrading a guest
kernel will only impact that environment without
modifying whatsoever the other OSes. On a
container, upgrading a container requires the
review of all the containers to ensure that the
kernel behavior is unchanged.

Handling of security and safety is also potentially
more robust in the hypervisor context. With the
hypervisor an application may be able to corrupt
its guest OS. However, the fact that each guest
is isolated helps limit the impact on security and
safety, because it is also isolated from other
guests. Another application running in another
guest can continue to run unaffected on the
same platform. A security breach in the guest
kernel, for example, affects one guest OS running
on the hypervisor, whereas the containerized
approach leaves all users affected because
of the single kernel design. As far as safety is
concerned, the hypervisor can be decomposed
into multiple subsystems whereas the safety
implications of one container failure must be
considered for all applications.

Finally, a hypervisor-based system is potentially
easier to analyze because – unlike the
containerized approach - it is not necessary
to assess the impact of any error on all other
aspects of the system. The “divide-and-
conquer” approach makes the isolation of
concerns more clear, at least from a CPU
application scope perspective.

6

Type 0 hypervisor is relatively lightweight, similar
to a bootloader with additional monitoring
capability. Indeed, it contains a minimalistic
bootloader that loads guests on different CPU
cores. In addition, there is only a small monitor
to detect any issues like incorrect accesses by
guests. When the platform is running smoothly,
the monitor does nothing. Hence the main
role of a type 0 hypervisor is to start different
operating systems with some level of isolation
on different cores. This can be suitable when
the system is relatively simple, there are enough
cores to dedicate one or more to each function,
and there is no device sharing to manage.
Different guests are simply assigned to different
cores in a static way.

A type 1 hypervisor is more sophisticated
and performs the role of a real scheduler and
protection environment. It can work with
dynamic workloads but typically a fixed number
of guests. At bootup, the hypervisor starts the
first guest as the master guest. The master
then starts the other guests. The hypervisor
coordinates the execution of these environments
and ensures they run correctly and in a real-
time, deterministic manner, switching between
processes according to a time-based trigger
or depending on the relative priorities of the
different guest operating systems. The type 1
hypervisor simplifies retaining real-time and

deterministic properties. One drawback is that
the master OS – being responsible for loading
the guest OSes – is also often responsible for
device sharing. Thus, a safe OS running as a
guest on the platform is effectively dependent
on a non-safe operating system. This may
not ensure sufficient robustness, placing
the entre platform at risk. If the master guest
malfunctions, the entire hypervisor platform
may malfunction.

The type 2 hypervisor is significantly different
in operation. After starting the general-purpose
operating system, POSIX applications start
normally. If and when required, virtual machine
applications can be started as an environment
to run a guest OS. This ensures full flexibility
to start one or many guests and run each
independently through a virtual machine
manager (VMM). Another advantage is that the
VMM also manages some level of security from
the host OS application context, which is less
privileged than in a Type 1 environment. On the
other hand, the definition of a Type 2 hypervisor
defines that a general purpose is used as the
host OS, like Linux or Windows, but not a real-
time OS and thus it is not able to maintain
real-time behavior or organize and schedule
different processes in a fully deterministic
way. This means that the general consolidated
system remains unpredictable as a whole.

Hypervisor Choices
Conventionally, there are three categories of hypervisor. They are termed type 0, type 1, and type 2.
All have their own strengths and drawbacks.

Academic types Other types in practice

• Type 1 hypervisor
• Bare metal hypervisor
• Doesn’t need and doesn’t provide

any OS functionality
• Type 2 hypervisor

• Hosted hypervisor
• Needs a rich OS that hosts it

• Type 0 hypervisor
• Bootloader combined with a

software monitor
• Software monitor on higher CPU

access level
• Type 1.5 hypervisor

• Real-time hypervisor on top of an
RTOS

• Hypervisor extension on top of a
real-time, safe & secure RTOS

7

Type 1.5: eMCOS Hypervisor®

In contrast with each of these approaches,
eMCOS Hypervisor combines a privileged
RTOS and minimal hypervisor code. Based
on eMCOS® POSIX, which is a multi-process
RTOS, it is capable of starting multiple POSIX
applications then running multiple guest OSes
while maintaining the real-time properties of
both the VMMs and POSIX applications as
guests. In this respect, this approach is similar
to that of a type 2 hypervisor. However, since

POSIX applications run directly on the POSIX OS,
there is less overhead than when running inside
a guest, and the real-time scheduling keeps a
proper deterministic execution environment.
Consequently, eMCOS Hypervisor can be seen
as a type 1.5: a real-time platform capable of
running direct real-time applications, while at the
same time giving the possibility to run additional
OSes and their applications as guests.

It is possible to develop various different
applications, including POSIX and open-source
applications, to run on the eMCOS POSIX RTOS
(figure 2). This can include safety applications
and security applications, which may have real-
time aspects. VMMs are responsible for running
the guests and handling any faults. At the
same time, virtual device drivers with access
to physical hardware can run as processes,

allowing guest OSes to share access through
a suitable bridge application handling each a
single device, for example for networking or
console sharing. There is a direct API for native
applications and standard hypervisor APIs for
communications: guest OSes communicate
through virtio interfaces. This enhances the
flexibility of the platform, because Virtio is
widely recognized throughout the industry.

Figure 2. The eMCOS Hypervisor permits running multiple guest OSes on common hardware

8

Multikernel Architecture
An aspect that is particularly important is that every attempt has been made to minimize the code
running in the hypervisor domain and in the kernel domain to ensure that most of the code is running
with the minimum amount of privilege in the platform.

However, to take consolidation and aggregation properly into account it is also necessary to consider
multicore behavior.

In a type 1.5 (or type 2) hypervisor, a virtual CPU
(vCPU) is managed by a thread of the host OS.
The host OS schedules all the threads in the
platform with their own priority, time quota,
and memory allowance, regardless of whether
said threads are managing a POSIX application
running directly, or a guest vCPU. This can
be done using a microkernel, which behaves
in a way to keep the kernel side as simple
as possible. Microkernels typically employ
symmetrical multiprocessing (SMP) that uses
a global locking system for managing access
to threads (figure 3). This global locking allows
only one set of interactions between cores to
take place at a time, which effectively prevents
real CPU parallelism. eMCOS hypervisor is
based on the eMCOS POSIX RTOS that uses
an innovative microkernel AND multikernel
design, in which each core runs a scheduler

that is largely autonomous and allows all cores
to communicate together using asynchronous
messages. This allows cores to schedule local
threads freely using only minimum local locking
thereby enabling multiple application and guest
execution to proceed simultaneously and truly
in parallel. This also enhances freedom from
interference (FFI) in multicore systems, as
cores will never depend on each other at the
microkernel level for rescheduling.

In other words, the use of a multikernel as an
operating system scheduler allows general
better system parallelism than a SMP scheduler.
As an extension, a multikernel-based hypervisor
also does not introduce a global lock in the
system and keeps the full parallelism of guest
OSes.

Figure 3. Multikernel versus SMP locking

9

Figure 4. Device management techniques supported in eMCOS Hypervisor

Hypervisor Device Management
Embedded applications are critically dependent
on correct device management to ensure
proper use of the common hardware resources.
Since sharing requires a bridge to coordinate
accesses, with the related additional latency
and occasional copies, it is useful to limit the
amount of shared devices. There is also an
impact on both safety and security when

considering failures cases in devices, as a
device on a shared physical bus may affect
other device given to other guests.

From the beginning of the project, it is therefore
important to consider how the various guests
will use the hardware, including the on-chip and
off-chip peripherals.

A number of approaches are effective, as illustrated in figure 4:

Passthrough
direct access from guest,

no sharing,
risk with DMA

Guest

VMM

Kernel

HW

Passthrough with IOMMU
direct access from guest,

no sharing,
HW-restricted DMA

Trap-and-emulate
Guest believes it has full

access, but VMM can
filter access

Paravirtualized
Guest requires specific driver,

best for sharing
e.g., virtio:

standardized virtual devices,
no specific driver development

Bridge

eMCOS Hypervisor device management

Virtio

Passthrough

In this case, the guest OS has direct access
to the hardware and both the VMM and kernel
agree that the guest can access the hardware.
This is suitable when there is no need for device
sharing. However, when hardware is capable of
direct memory transfers e.g., a DMA HW, there
is a risk that the hardware can corrupt the guest,
but also the VMM or even the host OS.

Passthrough with IOMMU

When direct memory transfers are required e.g.,
by a DMA HW, passthrough with IOMMU (input-
output memory-management unit) allows
direct access to resources. The IOMMU can
be configured to ensure only access to guest
memory is allowed. The device can then only
corrupt the guest at worse.

10

General Advantages of eMCOS Hypervisor
In summary, eMCOS Hypervisor offers several
advantages to embedded systems developers
seeking a robust and flexible platform for
virtualization. These include faster development,
without requiring any modification, because
Linux drivers can be reused for sharing physical
or virtual resources due to eMCOS’ POSIX API.

Further advantages include the opportunity
to ensure a faster boot sequence by taking
advantage of the opportunity to completely

control the startup and execution sequence.
This gives developers the freedom to choose
sequential and parallel multicore startup,
including parallel loading of Linux and Android
guests and real-time applications.

Also, true parallelism is possible, building on
eMCOS POSIX’s real-time multikernel design.
Truly parallel guest scheduling limits cross-
core interference.

Trap and Emulate

In this approach, the guest behaves in the same
way as with direct access but in practice the
VMM traps the request to access the resource
and decides whether it can be permitted. This
brings the benefit of increased security, because
the VMM can filter hardware accesses. For
stateless devices like clock controllers or GPIO
(general purpose input/output), this can allow
basic sharing.

Paravirtualized

The categories described previously do not
allow sharing. Paravirtualization is suitable

for sharing and uses a bridge to manage
hardware directly. The guest OS no longer has
direct access to the hardware and typically
communicates with the hypervisor using a
standardized interface; the guest is aware that it
runs on a hypervisor. In eMCOS Hypervisor, this
is usually a virtio interface. The virtual device
will talk to the bridge to get access to the real
world.

Developers of embedded systems need the
flexibility to use any and all of these techniques
together as appropriate to ensure the optimal
performance. All are supported by eMCOS
Hypervisor.

11

eMCOS Hypervisor in Action
As a practical example, it is possible to show how eMCOS Hypervisor supports virtualization in
a real-time control system, such as an industrial robot or automated teller machine (ATM). Both
use cases involve mixed-criticality applications including the user interface as well as robot safety
controls and ATM security features that require deterministic real-time response.

In the example shown (figure 5), eMCOS Hypervisor runs real-time applications on the native
eMCOS POSIX RTOS, alongside user-interface and connectivity applications on a Linux guest OS.
eMCOS also provides valuable extra help to enhance data security and thwart known cyberattacks,
including safeguards to handle authentication and ensure applications start and run correctly.

Figure 5. eMCOS Hypervisor managing applications running on native RTOS and Linux guest OS

12

Conclusion
The relentless demand for more sophisticated
functionality in embedded systems in turn
calls for greater system performance and
features. At the embedded edge, systems are
aggregated into reduced hardware to save the
bill of materials. The next step is to consolidate
the systems through software evolution.
Consolidating applications with mixed criticality
that require high standards of security and

functional safety is best handled using a
hypervisor that combines the best aspects
of type 1 and type 2 platforms. The eMCOS
Hypervisor, which is built on a native POSIX
RTOS, brings these advantages forward, has
along with its unique multikernel architecture
to combine high computing performance with a
keep safe and secure architecture.

*eSOL, eSOL Co. Ltd, eMCOS, eMCOS Hypervisor are registered trademarks or trademarks of eSOL Co., Ltd. in Japan and other countries.
*Other company or product names are trademarks or registered trademarks of their respective companies.

© eSOL 2002-2022. All rights reserved

E-mail: sw-inq-en@esol.com https://www.esol.com/

